## Ultra-wideband CMOS low noise amplifier

## C.-W. Kim, M.-S. Jung and S.-G. Lee

A two-stage ultra-wideband CMOS low noise amplifier (LNA) is proposed. The first stage is optimised for wideband input matching and low noise figure, while the second stage is optimised to extend the -3 dB bandwidth of the overall amplifier. The combination of stages can provide lower noise figure and wider bandwidth simultaneously over that of previously reported feedback-based CMOS amplifiers. The implemented LNA shows a peak gain of 13.5 dB, more than 8.5 dB of input return loss, and a noise figure of 2.5–7.4 dB over a -3 dB bandwidth from 2 to 9 GHz with DC power consumption of 25.2 mW.

*Introduction:* Because of recent technology trends towards multi- and wideband wireless communication systems, the design of a wideband low noise amplifier (LNA) has become a research interest for many. In particular, with technology scaling, CMOS wideband LNAs have shown excellent performance [1–3].

In wideband amplifier topologies, the resistive shunt-feedback topology [2, 3] has been extensively used because of its superior broadband characteristics. However, this topology has a well-known trade-off between noise figure and -3 dB bandwidth (also wideband input matching). The -3 dB bandwidth of the shunt-feedback topology can be given by

$$\omega_{-3\,\mathrm{dB}} = [1 + A_v] / [R_f (C_{gs} + (1 + A_v)C_{gd})] \tag{1}$$

where  $A_{\nu}$  is the open-loop gain of the amplifier,  $R_f$  the shunt-feedback resistor, and  $C_{gs}$  and  $C_{gd}$  the parasitic capacitances of the input transistor. As shown in (1), higher  $A_{\nu}$  and smaller  $R_f$  lead to wider -3 dB bandwidth. However, because of noise figure degradation, smaller  $R_f$  is not a desirable approach. Therefore, high  $A_{\nu}$  allows for not only wider bandwidth, but also lower noise figure. However, in CMOS technology, because of poor transconductance, higher  $A_{\nu}$  requires a large DC current. In this Letter we report a two-stage UWB CMOS LNA, which adopts shunt-series feedback and stagger-tuning technique for the first stage and second stage, respectively, in order to achieve high gain, low noise and wide bandwidth simultaneously.

*Circuit design:* Fig. 1 shows the proposed two-stage UWB CMOS LNA. In Fig. 1, the first stage adopts a shunt-series feedback for wideband input matching and low noise figure. The second stage uses a shunt-peaking load [4] to extend the -3 dB bandwidth of the overall amplifier. In the Figure, an output buffer is added for measurement purposes.



Fig. 1 Circuit schematic of proposed LNA

To increase the open-loop voltage gain with low DC power, the first stage of the proposed LNA adopts an inverter configuration  $(M_1, M_2$  and  $L_s)$  with shunt feedback resistor  $R_f$ . The first stage can provide higher total transconductance  $(g_{m1} + g_{m2})$ . This allows higher  $R_f$  for the given -3 dB bandwidth, which leads to lower noise figure. The total noise figure of the proposed two-stage amplifier in Fig. 1 is dominated by the first stage. However, the large input parasitic capacitances of the first stage due to the Miller effect can lead to degradation in input

impedance (below 50  $\Omega$ ) and -3 dB bandwidth at high frequencies. To overcome this problem, two on-chip spiral inductors  $L_s$  are adopted for the partial tuning-out of the input parasitic capacitances. In the second stage of the LNA, a cascode amplifier ( $M_3$ ,  $M_4$ ,  $L_d$  and  $R_d$ ), a shuntpeaking inductor  $L_d$  is added for additional bandwidth extension [4]. By optimising the size of  $L_d$  and  $R_d$ , the second stage compensates for the gain roll-off of the first stage at high frequencies and also provides good flatness over the frequency band of interest.







**Fig. 3** Measured and simulated noise figure

Measurement results: The proposed two-stage LNA shown in Fig. 1 is optimised to cover full UWB band (3.1-10.6 GHz) based on  $0.18\,\mu m$  CMOS technology. From Fig. 1, the first stage is selfbiased from the feedback resistor  $R_f$ , while the second stage is biased by an external voltage source  $(V_{b1})$ . Two MOS-capacitors  $C_{BP}$  (20 pF) are used to maintain a constant bounce between  $V_{DD}$ and ground. All inductors are implemented as on-chip elements  $(L_s = 0.5 \text{ nH} \text{ and } L_d = 0.6 \text{ nH})$ , and designed and modelled with an electromagnetic simulator. Fig. 2 shows the on-wafer S-parameter measurement results of the fabricated UWB CMOS LNA along with the simulated  $S_{11}$  and  $S_{21}$ . In Fig. 2, the measured  $S_{21}$  shows a peak gain of 13.5 dB with -3 dB bandwidth from 2 to 9 GHz, which is much better than that of previously reported feedback-based CMOS amplifiers [2, 3]. Also, the measured  $S_{11}$  and  $S_{22}$  are better than -8.5and -15 dB, respectively, over the -3 dB bandwidth. The degradation of measured  $S_{11}$  and  $S_{21}$ , compared to the simulation, is presumably caused by the improper modelling of the two inductors  $L_s$  and  $L_d$ . Fig. 3 shows the measured noise figure of 2.5, 3.3, 4.5, 7.4 and 8 dB, at 2, 3, 5, 9 and 10 GHz, respectively. The discrepancy between measurement and simulation in noise figure is due to the degradation of power gain  $(S_{21})$  compared to the simulation, and the inaccurate noise model of the transistor. The input referred IP3 is tested at 4 and 4.5 GHz and shows -5.4 dBm. The measured performances of the wideband amplifier are summarised in Table 1

and compared with the simulation results. The proposed LNA excluding the output buffer draws 14 mA from a 1.8 V supply. Fig. 4 shows the microphotograph of the fabricated UWB CMOS LNA with a chip size of 0.87 mm<sup>2</sup>.



Fig. 4 Chip photograph of LNA ( $1000 \times 870 \ \mu m$ )

Table 1: Summary of measured and simulated LNA performances

| Parameter            | Simulated    | Measured     |
|----------------------|--------------|--------------|
| $BW_{-3 \text{ dB}}$ | 2-10 GHz     | 2–9 GHz      |
| S <sub>11</sub>      | > -12  dB    | >-8.5 dB     |
| S <sub>22</sub>      | >-15 dB      | >-15 dB      |
| S <sub>21</sub>      | 14.5–17.5 dB | 10.5-13.5 dB |
| S <sub>12</sub>      | >-73 dB      | >-50 dB      |
| NF                   | 1.9–4 dB     | 2.5-7.4 dB   |
| IIP3                 | -7.2 dB      | -5.4 dB      |
| DC power             | 25.2 mW      | 25.2 mW      |

*Conclusions:* The design and measurement results of the two-stage UWB CMOS LNA, which is implemented in 0.18  $\mu$ m CMOS technology, are presented. From a combination of shunt-series feedback and shunt-peaking technique, the implemented two-stage CMOS LNA can provide lower noise, wideband input matching, and wider -3 dB bandwidth, simultaneously. The measurement results show a -3 dB bandwidth of 2–9 GHz, a peak gain of 13.5 dB, more than 8.5 dB of input return loss, higher than 15 dB output return loss, and noise figure of 2.5–7.4 dB over a -3 dB bandwidth, while dissipating 14 mA from a 1.8 V supply.

© IEE 2005 Electronics Letters online no: 20058254 doi: 10.1049/el:20058254 28 December 2004

doi: 10.1049/el:20058254C.-W. Kim, M.-S. Jung and S.-G. Lee (School of Engineering, Information and Communications University, 119 Munjiro,

Yuseong-gu, Daejeon 305-732, Korea)

E-mail: cwkim@icu.ac.kr

## References

- Bevilacqua, A., and Niknejad, A.M.: 'An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver'. ISSCC Dig. Tech. Papers, February 2004, pp. 382–383
- 2 Andersson, S., Svensson, C., and Drugge, O.: 'Wideband LNA for a multistandard wireless receiver in 0.18 μm CMOS'. Proc. ESSCIRC2003, September 2003, pp. 655–658
- 3 Adiseno, H.M., and Olsson, H.: 'A 1.8-V wide-band CMOS LNA for multiband multistandard front-end receiver'. Proc. ESSCIRC2003, September 2003, pp. 141–144
- 4 Lee, T.H.: 'The design of CMOS radio-frequency integrated circuits' (Cambridge University Press, 2004, 2nd edn)