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(b) 
Fig. 2. (a) Magnitude response specification of cone filter (0, = 0). 

(b) Resultant magnitude response of cone filter (to1 = 0). 

VII. NUMERICAL EXAMPLE 

A numerical example is shown for the frequency-domain 
design. The frequency response of a cone filter [2] is the 
following: 

H d (  1 ,  W 2 ,  

(1 if or < 0.8w3 
W ,  - 0 .80~  

if 0 . 8 ~ ~  <or < 0 . 8 0 ~  + 0 . 4 ~  (23) 
= {  ’- 0 . 4 ~  

\ O  otherwise 

The magnitude response Ad( l ,m ,n)  on sampled points is pro- 
duced from the frequency response by (9) with L = M = N = 21. 
It is decomposed by the outer product expansion, and the first 
four singular values are retained and the others are truncated. 
The specifications of 1-D digital filters are approximated to 
minimize the I, norm of the error of the magnitude response by 
the Davidon-Fletcher-Powell method. The filter orders are 
second for c$~(.z~) and xP(z, )  ( p  = 1,2,3,4), and third for $ P ( ~ 3 )  

( p = 1,2,3,4), respectively. 
The magnitude responses of the specification and the approxi- 

mation result on the plane with w l = O  are shown in Fig. 2(a) 
and (b). The approximation error is 13.16% for the following 
criterion: 

VII. CONCLUSION 

This paper has proposed the efficient design method of 3-D 
digital filters by the outer product expansion. It can decompose 
design problems of 3-D digital filters into design problems of 
1-D digital filters by the outer product expansion. Both space 
domain specifications and frequency domain specifications can 
be designed by this method. Diagonal symmetries of 3-D digital 
filters can be exploited to reduce computations in the design 
procedure. Moreover, the parallel separable structure produced 
by this method has high parallelism, regularity, and modularity, 
and so it is suitable for parallel and VLSI implementation of 
3-D digital filters. 
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Extension of the Open-circuit Time-Constant 
Method to Allow for Transcapacitances 

R. M. FOX AND s. G. LEE 

Abstrocr -This paper reviews a previously published method for, de- 
termining frequency-domain transfer tunctions of linear circuits and 
extends the method to allow for transcapacitors. The method is an 
extension of the familiar open-circuit time constant analysis technique, 
which depends on successive analyses of frequency-independent circuits. 
Where the original technique required finding the resistance “seen” by 
each capacitor, the extended technique requires finding a transresis- 
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tance for each transcapacitor. This paper presents a derivation of the 
generalized time-constant technique and demonstrates its application in 
a simple circuit. 

I. INTRODUCTION 
The earliest small-signal models for bipolar and field-effect 

transistors included only resistors, capacitors, and frequency- 
independent controlled sources. These models were simple and 

intuitive, and a number of useful “tricks” were available to 
analyze circuits based on them. However, several workers [1]-[3] 
pointed out inaccuracies due to these representations; more 
accurate models were then developed which used stored transis- 
tor charges as state variables. 

A key feature of such charge-based models is that the termi- 
nal currents include terms of the form C J k ( d V k  / d t ) ,  where c J k  

is a codgtant and v k  is the instantaneous voltage at port k. Such 
a term can be represented in an equivalent circuit as a voltage- 
controlled current source across port j .  In the small-signal 
frequency domain, such a source takes on the value s c J k v k .  c J k  

has units of capacitance, but for j # k, the controlled source 
represents not a capacitor but a transcapacitor. A capacitor can 
only be used when j =  k. In general, transcapacitances are 
nonreciprocal, meaning cJk # c k J .  The need for nonreciprocal 
elements to model active devices is not surprising-a tran- 
scapacitor is related to a capacitor the same way a transconduc- 
tance is to a conductance. 

A number of small-signal models including transcapacitors 
has been impleinented in circuit simulators such as SPICE. 
These include the BSIM MOSFET model [4], the bipolar tran- 
sistor model in the device/circuit simulator MMSPICE [5], and 
the five-terminal silicon-on-insulator model of Fossum and 
Veeraraghavan [6]. Typically, these models are accurate to fre- 
quencies about three times higher than those using only recipro- 
cal capacitors. One would thus expect these models to be 
popular with circuit designers. In fact, some designers have 
resisted using these models, in part because some of the familiar 
circuit analysis techniques cannot be applied. 

In particular, the open-circuit time-constant method [7] for 
estimating dominant pole frequencies has not been applicable to 
circuits with transcapacitors. The present work demonstrates 
how this simple method can be extended to such circuits. Fur- 
thermore, this paper shows how to handle transcapacitors in an 
extension of the time-constant technique [8], which allows sim- 
plified calculation of complete transfer functions. It uses succes- 
sive analyses of resistive networks to find dc driving-point and 
transfer functions, requiring no complex algebra or frequency- 
dependent terms. 

The extended time-constant method is derived in Section 11. 
The derivation is an extension of the development in [7]. This 
method could be extended further to allow for inductances and 
for other frequency-dependent controlled sources, but such ex- 
tensions are excluded here. Section I11 gives an example of use 
of the method. 

11. DERIVATION OF THE EXTENDED 
TIME-CONSTANT METHOD 

Consider a multiport network, with a port defined for each 
capacitor, for each transcapacitor, and for each voltage which 
controls a transcapacitor (a transcapacitive controlling voltage, 
or TCV), as well as ports for the output (port 0) and for the 
input (port i ) .  Now define A as the determinant of the short-cir- 
cuit admittances yjk.  It is convenient to define N as one less 

TABLE I 
ADMI~ANCE COFACTOR REPRESENTATION FOR VARIOUS 

TRANSFER FUNCTIONS 

Aii 

Current Gain: 

Transimpcdancc: 
~~ ~ 

& 
A i i .  00 

Transadmittance: 

than the number of ports. A has the form 
g l l +  SCIl g12 + SCl2 . . ’ g l ,  N + l  + scl ,N+l 

g2,N+1+SC2,N+1 I g u  + SC, 
. . . 

A = l  
IgN+l , l+SCN+I,I  gN+l , l+scN+l , l  g N + l , N + l +  SCN+l,N+l I 

(1) 
CJJ is the value of the capacitor (if any) at port j ,  and c J k ,  j # k, 
is the transcapacitance from a TCV at port k that controls a 
transcapacitor at port j. No capacitive element occurs in more 
than one y j k .  In most circuits most of the possible coefficients 
c j k  are zero. 

All possible transfer functions can be expressed as ratios of 
cofactors formed by deleting certain rows and columns of A. It 
is not necessary in practice to actually form these determinants; 
they are used here only for the purposes of this derivation. The 
numerator cofactor A N  in each case is Aio, the Nth-order 
determinant formed by deleting row i for the input and column 
o for the output. All terms YJk having j = i or k = o are thereby 
deleted. Such deleted terms correspond to self-admittances at 
the input and output ports, and reverse transadmittances from 
the output back to some other port and from any port back to 
the input. It is useful to define CN as the set of all nonzero 
capacitive elements c J k .  having j # o and k # i, corresponding 
to the coefficients of s in A,,,. 

The denominator determinant AD is formed in a similar way. 
Selection of rows and columns to be deleted depends on the 
type of transfer function to be computed. Simply, any port 
where the short-circuit output current is defined or where the 
input voltage is applied is considered as a short circuit in finding 
AD, and its corresponding row and column are deleted. The 
various possibilities are summarized in Table I. A D  is the 
cofactor of A with row and column deleted for any shorted port. 
The nonzero coefficients of s in AD form the set C,: the set of 
all nonzero capacitive elements CJk for which neither j nor k 
corresponds to a shorted port. 

When expanded, AD has the form 
AD = bo + bls + b2s2 + . . . + bNdsNd (2) 

where Nd is the order of AD. Nd equals N for a voltage gain or 
a current gain, N - 1  for a transadmittance, or N + l  for a 
transimpedance. Now, bo = A%, the determinant evaluated with 
all capacitive elements set to zero. It is useful to write 

(3) 

where ai = bj/A%. 
Expanding the determinant shows that the first-order term is 

(4) 
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where the summation over C, implies inclusion of a term for 
each element in C,. From Cramer's Rule, Alk /A; = R:], the 
transresistance from a current source at port j to an open-cir- 
cuit voltage at port k ,  with all capacitive elements set to zero. 
For a capacitor Cll, the corresponding element R; is just the 
driving-point resistance at port j .  These resistive coefficients can 
be calculated from straightforward circuit analysis, so the deter- 
minants themselves are not needed. Since the sum of these RC 
products forms a conservative estimate of the circuit's dominant 
time constant, this method is often called "time-constant analy- 
sis." 

Calculation of the second-order coefficient, a2 is more com- 
plex. Second-order terms involve products of pairs of capacitive 
elements. Let C,, denote the set of all unique products of pairs 
clkcIm of nonzero capacitive elements in c, such that j # 1 and 
k # m .  This set contains all the pairs except those where a 
capacitor and a transcapacitor, or two transcapacitors, exist at 
the same port (coefficients in the same row) or a capacitor and a 
TCV, or two TCV's (same column), exist at the same port. Each 
element in this set is multiplied by a corresponding coefficient 

A%jk,lm 
' j k , I m  ~ 

A; 
For A%jk # 0, this can be expanded as 

Now A i , k  /A% is just R:j, as shown previously, but the first 
factor's meaning has not yet been established. Note that for 
gjk # 

(7) 

If gjk  is allowed to approach infinity, the last term vanishes, the 
first term on the right-hand side remains finite and nonzero, and 
the left-hand side is unaffected. Therefore, 

A similar analysis applies if row 1 and column 

(8) 

m are deleted, so 

( 9 )  

Thus 

It is possible to contrive circuits for which A$,k = 0 and 
# 0. In such cases, the relation a,k,lm = lirn R: , /g lk  

can be used to find a,k,lm. 
In general, calculation of R$ requires that the transresis- 

tance from port 1 to port m be calculated for a test circuit in 
which a voltage-controlled current-source ( v c c s )  of value g,vk 
is placed at port j .  The resulting expression is then evaluated in 
the limit g ,  +W. Fortunately, with many models, such a VCCS 
already exists in parallel with each transcapacitor, so the expres- 
sion for R$ already includes the needed terms for g l k ,  and no 
additional test circuit need be evaluated. For the case of a 
reciprocal capacitor C,], R i l  is found by computing RLl for a 
circuit with port j shorted. 

g/* +CO 

Note that the roles of index pairs lm and jk are completely 
symmetrical, so the coefficient of CjkClm can be computed in 
either of two ways: 

The second-order coefficient can be computed using 

The third-order term is based on the set C,, of all unique 
products of triplets CjkClmCpq of nonzero capacitive elements in 
C, such that j # l ,  1 # p ,  and p #  j ,  and k # m ,  m # q ,  and 
q # k. The restrictions eliminate triplets with two or more ele- 
ments in the same row (a capacitor and a transcapacitor or two 
transcapacitors at the same port), and those with elements in 
the same column (a capacitor and a TCV or two TCV's at the 
same port). Each triplet has a corresponding coefficient, which 
is easily shown to be 

where R;$lm = lim [ R t p ] .  The products of all the triplets in 

C,, and their corresponding coefficients can be summed to 
form a,. 

This procedure can then be generalized and used tQ @date 
denominator terms through aNd. The order of the denominator 
is usually less than Ndr since many of the higher order terms are 
zero. 

gik 
g / m  + m  

Determination of the Numerator Polynomial 
The numerator of the system function can be written as 

h o + h , s + h 2 s 2 +  * * * h N S N  (14) A N  Ai0 

A; A% 
_=-=  

where N is the order of the numerator. 

function 
The constant term h,  is the dc limiting value of the transfer 

(15) 
A70 
AD 

h - - = H 0  = lim H ( s ) .  
s + o  0 -  0 

The first-order coefficient h,  is based on the set C,,, of nonzero 
capacitive elements c j k ,  j # i ,  and k # 0. The restrictions on j 
and k eliminate any elements that form part of a reverse signal 
path with a transcapacitor at the input port or with a TCV at 
the output. Also excluded are capacitors in parallel with the 
input or output ports. Usually most of the elements of CN are 
also elements of C,. For each such element c j k ,  the corre- 
sponding coefficient is 

For the case j = k ,  gjk = gIl + m implies that port j is to be 
shorted. 

Now C, may contain elements for which ajk = A;jk = 0. cN 
may also contain elements not present in C,, corresponding to 
elements of the form C,, or Cok, eliminated when the input or 
output was shorted to find the denominator. For these elements, 
which form parts of unilateral signal paths, (16) cannot be 
applied. In these cases, however, hjk can be found another way. 
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Coefficient 
ajk = <j 

ml ajk 
Im ajk. l,,, = %j a h  = dk 

a j t  h, = R ~ ~ J ~  9p ajk. 

Conditions 

j + l . k #  m 

j f 1 . j f q .  I f q. k f m. k f p. m # p 

By analogy to (91, Aio , jk  can be written as 

Coefficient How Computed 

a i  1 4 1 

a2 z 4 2  

13 3 4 3  

U 1  4 4  

14 z 4 4  

1111. 22 4 2  R:f 

If ajk = A%jk / A %  = 0, from (17), A% = A%lgjk=0, which means 
that A; does not depend on gjk. Thus lim A%=A% is 

finite. This is equally true if Cik was eliminated from set C,. In 
either case, 

gjk -+ 

Result. where 
D=l + (& + &lb) RS 

RS/D 

Rs/D 

RD 

Rs/D 

Rs/D 

0 

Once all of the first-order coefficients have been found, h,  
can be found by summing the hjkCjk products over the whole 
set: 

The second-order coefficient is based on the set c N 2  of all 
unique products of pairs CjkCl,  of nonzero capacitive elements 
in CN such that j # 1 and k # m. If A%jk,Im is nonzero and both 
c j k  and C,, are elements of C,, 

hjk, / ,  = lim 

glm +m 

[HO]Rjk RO - H j k l m R j k  RO - H i k . l m a .  
ml k j -  ml k j -  j k , l m *  

gjk --rm 

(20) 

If c j k  or C1, is not an element of C,, or if ajk,/, = 0, then 

so that 

hjk, lm = lim [ '1. 
gjk g j k g l m  
glm +- 

Generalization to higher order coefficients is straightforward. 
The results of this section are summarized in Table 11. 

- '.lr. 
Fig. 1. Common-source amplifier equivalent circuit. 

111. 33 RD Rs/D 

~~ 

2 2  41 m. 33. 41 1 a x 4 1  R,, I 0 

111. EXAMPLE: COMMON-SOURCE AMPLIFIER 

An example will help to clarify the extended time-constant 
technique. The circuit shown in Fig. 1 represents a common- 
source amplifier with source degeneration. The transistor model 
includes two transcapacitors, C,, and C,,, in parallel with g, 
and g,, VCCS's. The circuit with all capacitive elements re- 
moved is analyzed to find the voltage transfer function. The 
results are given in Table 111. 

All of the capacitive elements contribute to the first-order 
time constant. Coefficient a41 = RY, is found by applying a 
current source I ,  at port 4 in the same direction as the C41 
controlled source.; R!, is found as V2/14. is found by a 
similar technique. 
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There are 10 unique combinations of the five capacitive 
elements taken in pairs; of these, pairs C11C41, C22C42, and 
C,,C4, are excluded from the set CD2 since they each share 
common ports. The remaining second-order coefficients are 
easy to evaluate. all,,, = n , , R ~ ~  is obviously zero, since shorting 
port 1 also reduces the resistance at port 2 to zero. Coefficients 
a22,41 = a4,R;: and ~ 1 1 , 4 2  = a,,R$; are also both zero, since 
R;:= lirn R:, and Rf t= lirn RY, are both zero. Sim- 

ilarly, Rii can be found as lirn R:, and RiZ is lim R:,, 

both of which are just R,. Therefore, 

g, +m gmb +m 

g, + m  gmb+m 

‘33,41 a41Ri: = 

= Ri: = R D  R S  /[ + ( g m  $- g m b  R S ] .  (22) 
Similar analysis shows that a,,, , ,  and a,*,,, give the same result. 

Although there are 10 ways to form triplets of the capacitive 
elements, all but three are eliminated from set CD, because of 
shared ports. The remaining coefficients all evaluate to zero. 

The leading coefficient h, of the numerator polynomial is the 
dc value of the transfer function: 

hl.l H o  = - g m R D / [  + [ g m  + gmb)RS] .  ‘ (23) 
The set C, needed to find the first-order coefficient h, 

includes only the four elements C,,,  C,, C,,, and C,,; C,, is 
excluded since it is in parallel with the output port. Most of the 
terms needed to find h, can be calculated by inspection. For 
example, H4, is just 

There are three pairs of elements in set e,,,,: C,,C,,, C11C42, 

and C,,C4,. Since h,, is zero, h,,,,, is zero. In the other two 
cases, since the corresponding denominator coefficient is zero, 
(21) must be used. Since H41 is finite, h22.41 can be found from 

lirn H o  so that h,, = 0. 
g m b + m  

The complete transfer function can be written as 

where 

This work has demonstrated an extension of the time-constant 
method to allow for nonreciprocal capacitive elements. A large 
number of cross products often arise in the higher order terms 
of transfer functions. Adding transcapacitors to the transistor 
model complicates the expressions even more. For this reason, 
the most common use of the extended time-constant method is 
likely to be to provide an easy way to gain an intuitive feel for 
the effects of transcapacitive elements on circuit behavior. 
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Some Schur-Stability Criteria for Uncertain 
Systems with Complex Coefficients 

A. KATBAB, F. KRAUS, AND E. I. JURY 

Abstract -Let a discrete-time uncertain system be characterized by a 
polynomial f ( r )  = aoz” + a,z“-’ + . . . + a,, with complex coefficients 
ai  = xi + jyi whose real and imaginary parts belong to some known 
intervals. The stability of such systems, in the face of coefficient varia- 
tion, is under question. In this paper, three approaches are presented 
for robust stability analysis of these kinds of systems. 

I. INTRODUCTION 
Let a set of polynomials of degree n having complex coeffi- 

cients be presented by 
n 

f ( 2 )  = a,z“-i  (1.1) 
i = O  

where in general, for 0 Q i Q n ,  ai = x i  + jyi ( x ,  + hiyo # O), and 
x i  and yi are arbitrary but fixed in the real intervals: 

The problem of Schur robust stability of (1.1) when ai’s are real 
(yi = 0, for all i ,  0 Q i Q n )  has been tackled by several re- 
searchers. Hollot and Bartlett [ l]  reported that if real coeffi- 
cients ai’s are constant for i = 0,1, * * ,  n /21 (where by n /2] we 
mean the next lowest integer with respect to n/2), then the 
interval polynomial f ( z )  is Schur if and only if all the corner 
polynomials corresponding to ai E (ai, Gi), i = n /2] + 1, * e ,  n are 
Schur. This result was generalized in [2] for the case when all 
the real coefficients ai are subject to change. There are coun- 
terexamples [ 11 that even the “weak” version of Kharitonov’s 
theorem, which states that for continuous-time systems a neces- 
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