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simple delay adder that includes a current source, two switches, 

an inverter, a comparator, and a capacitor. In Fig. 12, when the 

input signal of the LEB or LEB compensation block switches 

to high, the current source charges the capacitor CLEB with ILEB. 

The charged voltage then increases and is compared with VLEB 

by the comparator. After tLEB, the charged voltage level exceeds 

VLEB and the output signal becomes high. tLEB is then given by 
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Although the proposed LED driver can achieve high current 

accuracy, the settling time issue must still be resolved. Long 

settling time may introduce LED current error if the PWM duty 

is sufficiently low or the PWM frequency is sufficiently high. 

Therefore, the PWM operating range may be restricted for high 

current accuracy. To circumvent the limitation of the PWM 

operating range, the settling time should be sufficiently short. 

Because the proposed driver operates in a continuous 

conduction mode (CCM), the value of the integrated current 

before the inductor current reaches IREF during the 1st cycle is 

larger than that of the integrated current before the inductor 

current reaches IREF during each switching period in the steady-

state, resulting in a large amount of current ripple during the 1st 

cycle, as shown in Fig. 13(a). Hence, the value of the inductor 

current at the starting point of the 2nd cycle deviates from the 

steady-state valley current IVALLEY_Steady-State, and it takes more 

than 10 cycles to enter into the steady-state operation. Fig. 13(b) 

shows the waveform of the inductor current that adopts a fast-

settling technique. The technique is to make the 1st cycle current 

reference and off-time half so that the value of the inductor 

current at the starting point of the 2nd cycle becomes 

IVALLEY_Steady-State. Consequently, the gap between IVALLEY_Steady-

State and 2nd cycle starting point becomes sufficiently small and 

the inductor current settles within 3 cycles. 

IV. EXPERIMENTAL RESULTS 

The proposed LED driver is implemented in a 0.35-μm high 

voltage CMOS technology. The chip micrograph and its test 

setting are shown in Fig. 14. The chip area including the 

bonding pad is about 1250 μm x 1460 μm. The LED driver can 

support input voltage VIN of up to 600 V, which is the maximum 

rating of the high voltage power MOSFET, and the maximum 

switching frequency is 500 kHz. Because the operating 

conditions can vary depending on the application set-up, this 

 
 

Fig. 12. Block and timing diagram of LEB and LEB compensation block. 
 

 
 

Fig. 13. Inductor current waveform during settling operation. 
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Fig. 14. (a) Micrograph and (b) test setting of the proposed LED driver. 

 

TABLE I 
DESIGN SPECIFICATION OF THE PROPOSED LED DRIVER 
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paper presents specific measured results at IREF = 500 mA with 

tOFF = 1 μs and L = 1 mH, and CO = 0.15 uF while driving 30 to 

50 LEDs. The inductor and the capacitor values are chosen to 

achieve the ripple factor of the LED current being below 30% 

and the output ripple voltage being less than 4.5V, respectively. 

To meet the above operating conditions, the VIN range is from 

110 to 200 V. The detailed design specification of the proposed 

LED driver is in Table I. 

The measured waveforms of the proposed LED driver during 

the PWM start-up period are shown in Fig. 15. In Fig. 15, the 

fast-settling technique is applied so that the inductor current 

settles in 3 cycles. After the PWM signal switches to high, the 

inductor current increases until it reaches IREF in its 1st cycle and 

then decreases within a half period of tOFF. Consequently, the 

inductor current enters into the steady-state operation in its 3rd 

cycle, similar to the waveform shown in Fig. 13(b). The settling 

times are 8.95 and 14.84 μs for 30 LEDs and 50 LEDs when VIN 

= 200 V, respectively. The settling times are short enough and 

only 0.22 to 0.37% of one PWM period. The measured 

waveforms of the proposed LED driver under PWM dimming 

control are shown in Fig. 16. The test frequency of PWM 

dimming is 250 Hz and the duty ratios are 5 and 95%. The 

measured waveforms of the line regulation characteristic of the 

proposed LED driver are shown in Fig. 17. When VIN is 

switched from 110 to 200 V and vice versa over one PWM cycle, 

the on-time slope changes smoothly. Because the off-time is 

generated by the constant off-time generator, tOFF remains 

constant even if VIN changes. On the other hand, according to 

(6), the LED current slope during the on-time depends on VIN 

and hence varies when VIN changes, and the corresponding on-

time also changes. Figure 17 shows that the regulated currents 

does not change and the ripple factor of the LED current 

maintains within 20% even though the slope and on-time 

change. Measured steady-state operation of the proposed LED 

driver under different number of LEDs is shown in Fig. 18. 

When VIN = 160 V, the output voltage variation ΔVO increases 

 
 

Fig. 15. Measured waveforms of the proposed LED driver during PWM start-up period. (a) 30 LEDs. (b) 50 LEDs. 
 

 
 
Fig. 16. Measured waveforms of the proposed LED driver under PWM dimming control. (a) duty = 5%. (b) duty = 95%. 
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as the number of LEDs increases. As a result, large slope 

variations in ILED while driving 50 LEDs can be observed in Fig. 

18(c) and the LED current behavior is the same as the LED 

current characteristic shown in Fig. 5. On the contrary, the slope 

variations in ILED during while driving 30 LEDs are negligible 

because the current slopes of ILED are sufficiently steep, as 

shown in Fig. 18(a). In spite of good line regulation and stead-

state operation for various number of LEDs, switching 

frequency variation under different input and output voltages is 

inevitable due to the constant off-time operation. 

The measured LED current error and power efficiency versus 

input voltages in the proposed LED driver while driving 30, 40, 

and 50 LEDs are plotted in Fig. 19. The worst-case current error 

is 1.7% for 30 LEDs. Even under large slope variations of ILED, 

 
 

Fig. 17. Measured waveforms of VIN line regulation in the proposed LED driver. (a) 110 V => 200 V. (b) 200 V => 110 V. 

 

 
 

Fig. 18. Measured steady-state operation of the proposed LED driver when VIN = 160V while driving (a) 30 LEDs, (b) 40 LEDs, and (c) 50 LEDs. 

 

 
 

Fig. 19. Measured (a) LED current error and (b) power efficiency under different input voltages and number of LEDs in the proposed LED driver. 
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as shown in Fig. 18, the LED current error of the proposed 

driver does not exceed ±1.7%. The power efficiency increases 

continuously as VIN approaches the output voltage of the LED 

because the wasted power is reduced. The final peak efficiency 

of the proposed driver is 98.16% under the given test conditions. 

Table II summarizes the performance of the proposed driver 

in comparison with prior works. Compare to recently reported 

works [28]–[29] and [33]–[34], the proposed LED driver that 

adopts the integrated current control scheme requires larger 

inductor value to meet the ripple factor requirement due to the 

large number of LEDs. However, the proposed driver shows 

state-of-the-art performance in current accuracy and peak 

efficiency over wide input and output voltage ranges. The 

discontinuous low-side current sensing scheme and large 

number of LEDs allow to achieve high peak efficiency. 

V. CONCLUSIONS 

In this paper, an average current mode controlled inverse 

buck dimmable LED driver with an integrated current control 

technique is proposed and implemented. To achieve high 

efficiency, discontinuous low-side current sensing is adopted. 

The newly proposed control scheme mitigates the current 

accuracy limit of PCC and HCC such that the proposed LED 

driver achieves high accuracy while driving a large number of 

LEDs. The adoption of a fast-settling technique allows the 

driver to enter into the steady-state within 3 cycles. 

Implemented in a 0.35-μm HV CMOS technology, the 

proposed LED driver achieves current error of ±1.7% and 

power efficiency of 98.16% while driving 30 to 50 LEDs under 

110 to 200V input voltage. The PWM dimming range is 5 to 

95%. The proposed dimmable LED driver can be used for large 

scale single-string LED backlighting applications. 
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Topology 

(# of Power MOSFETs)
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Synchronous Inverse
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Synchronous Buck

(2)

Asynchronous Inverse 

Buck (1)

Asynchronous Inverse 

Buck (1)

Control Scheme Adaptive Off-time

Adaptive Timing 

Difference 

Compensation

Glitch-Tolerant 

Synchronous Current 

Control

Hysteretic Current 

Control

Integrated Current 

Control

Typ. Average Current 

(mA)
720 345 700 Up to 1000 500

Current Error (%)

(# of LEDs)
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